使用TensorFlow实现LSTM

使用Cell实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# 以Cell方式实现LSTM
# %%
import os

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, losses, optimizers, Sequential

# 指定GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

batch_size = 128 # 批量大小
total_words = 10000 # 词汇表大小N_vocab
max_review_len = 80 # 句子最大长度s,大于的句子部分将截断,小于的将填充
embedding_len = 100 # 词向量特征长度f
# 加载IMDB数据集,此处的数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape)
print(x_test.shape, len(x_test[0]), y_test.shape)
# %%
print(x_train[0])
# %%
# 数字编码表
word_index = keras.datasets.imdb.get_word_index()
# for k,v in word_index.items():
# print(k,v)
# %%
word_index = {k: (v + 3) for k, v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2 # unknown
word_index["<UNUSED>"] = 3
# 翻转编码表
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])


def decode_review(text):
return ' '.join([reverse_word_index.get(i, '?') for i in text])


decode_review(x_train[8])

# %%

# x_train:[b, 80]
# x_test: [b, 80]
# 截断和填充句子,使得等长,此处长句子保留句子后面的部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
# 构建数据集,打散,批量,并丢掉最后一个不够batchsz的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batch_size, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batch_size, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)


# %%

class MyRNN(keras.Model):
# Cell方式构建多层网络
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64],构建Cell初始化状态向量,重复使用
# 与RNN不同 LSTM有两个输出 隐藏层状态也为两个
self.state0 = [tf.zeros([batch_size, units]), tf.zeros([batch_size, units])]
self.state1 = [tf.zeros([batch_size, units]), tf.zeros([batch_size, units])]
# 词向量编码 [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# 构建2个Cell
self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)
self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)
# 构建分类网络,用于将CELL的输出特征进行分类,2分类
# [b, 80, 100] => [b, 64] => [b, 1]
self.out_layer = Sequential([
layers.Dense(units),
layers.Dropout(rate=0.5),
layers.ReLU(),
layers.Dense(1)])

def call(self, inputs, training=None, mask=None):
x = inputs # [b, 80]
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute,[b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
out1 = None
for word in tf.unstack(x, axis=1): # word: [b, 100]
out0, state0 = self.rnn_cell0(word, state0, training)
out1, state1 = self.rnn_cell1(out0, state1, training)
# 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
x = self.out_layer(out1, training)
# p(y is pos|x)
prob = tf.sigmoid(x)

return prob


def main():
units = 64 # RNN状态向量长度f
epochs = 50 # 训练epochs

model = MyRNN(units)
# 装配
model.compile(optimizer=optimizers.RMSprop(0.001),
loss=losses.BinaryCrossentropy(),
metrics=['accuracy'])
# 训练和验证
model.fit(db_train, epochs=epochs, validation_data=db_test)
# 测试
model.evaluate(db_test)


if __name__ == '__main__':
main()

使用Layer实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# 以Layer方式实现LSTM
# %%
import os

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, losses, optimizers, Sequential

# 指定GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

batch_size = 128 # 批量大小
total_words = 10000 # 词汇表大小N_vocab
max_review_len = 80 # 句子最大长度s,大于的句子部分将截断,小于的将填充
embedding_len = 100 # 词向量特征长度f
# 加载IMDB数据集,此处的数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape)
print(x_test.shape, len(x_test[0]), y_test.shape)
# %%
print(x_train[0])
# %%
# 数字编码表
word_index = keras.datasets.imdb.get_word_index()
# for k,v in word_index.items():
# print(k,v)
# %%
word_index = {k: (v + 3) for k, v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2 # unknown
word_index["<UNUSED>"] = 3
# 翻转编码表
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])


def decode_review(text):
return ' '.join([reverse_word_index.get(i, '?') for i in text])


decode_review(x_train[8])

# %%

# x_train:[b, 80]
# x_test: [b, 80]
# 截断和填充句子,使得等长,此处长句子保留句子后面的部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
# 构建数据集,打散,批量,并丢掉最后一个不够batchsz的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batch_size, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batch_size, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)


# %%

class MyRNN(keras.Model):
# Cell方式构建多层网络
def __init__(self, units):
super(MyRNN, self).__init__()
# 词向量编码 [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# 构建RNN
self.rnn = keras.Sequential([
layers.LSTM(units, dropout=0.5, return_sequences=True),
layers.LSTM(units, dropout=0.5)
])
# 构建分类网络,用于将CELL的输出特征进行分类,2分类
# [b, 80, 100] => [b, 64] => [b, 1]
self.out_layer = Sequential([
layers.Dense(32),
layers.Dropout(rate=0.5),
layers.ReLU(),
layers.Dense(1)])

def call(self, inputs, training=None, mask=None):
x = inputs # [b, 80]
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute,[b, 80, 100] => [b, 64]
x = self.rnn(x)
# 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
x = self.out_layer(x, training)
# p(y is pos|x)
prob = tf.sigmoid(x)

return prob


def main():
units = 32 # RNN状态向量长度f
epochs = 50 # 训练epochs

model = MyRNN(units)
# 装配
model.compile(optimizer=optimizers.Adam(0.001),
loss=losses.BinaryCrossentropy(),
metrics=['accuracy'])
# 训练和验证
model.fit(db_train, epochs=epochs, validation_data=db_test)
# 测试
model.evaluate(db_test)


if __name__ == '__main__':
main()