利用神经网络完成对手写数字进行识别

  • 网络结构

两个隐藏层
每层激活函数为Relu
数据集:mnist

1. 准备数据

1
2
3
4
5
6
7
8
9
10
11
12
13
import os
import numpy as np
import matplotlib.pyplot as plt
import torch
# 导入 pytorch 内置的 mnist 数据
from torchvision.datasets import mnist
# 导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 导入nn及优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import nn

2. 定义一些超参数

1
2
3
4
5
6
7
# 定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5

3. 下载数据并对数据进行预处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 定义预处理函数,这些预处理依次放在Compose函数中。
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

# 判断是否需要从网络下载数据集
is_downloda = True
if os.path.exists('./data/MNIST'):
is_downloda = False
# 下载数据,并对数据进行预处理
train_dataset = mnist.MNIST(
'./data', train=True, transform=transform, download=is_downloda)
test_dataset = mnist.MNIST('./data', train=False, transform=transform)

# dataloader是一个可迭代对象,可以使用迭代器一样使用。
train_loader = DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=False)
  • Normalize([0.5], [0.5])对张量进行归一化,这里两个0.5分别表示对张量进行归一化的全局平均值和方差。因图像是灰色的只有一个通道,如果有多个通道,需要有多个数字,如三个通道,应该是Normalize([m1,m2,m3], [n1,n2,n3])
  • 用DataLoader得到生成器,可节省内存。

4. 可视化源数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
examples = enumerate(test_loader)
# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。
batch_idx, (example_data, example_targets) = next(examples)
# next() 返回迭代器的下一个项目。

fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i+1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Ground Truth: {}".format(example_targets[i]))
# 关闭x,y轴显示
plt.xticks([])
plt.yticks([])

png

5. 构建模型

5.1 构建网络

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Net(nn.Module):
"""
使用sequential构建网络,Sequential()函数的功能是将网络的层组合到一起
"""

def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Net, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1))
self.layer2 = nn.Sequential(
nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))

def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.layer3(x)
return x

5.2 实例化网络

1
2
3
4
5
6
7
8
9
10
11
# 检测是否有可用的GPU,有则使用,否则使用CPU
print("GPU是否可用", torch.cuda.is_available())
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 实例化网络
model = Net(28 * 28, 300, 100, 10)
# 输出10维(10个数字)
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
GPU是否可用 False

6. 训练模型

6.1 训练模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []


for epoch in range(num_epoches):
train_loss = 0
train_acc = 0
model.train()
# 动态修改参数学习率
if epoch % 5 == 0:
optimizer.param_groups[0]['lr'] *= 0.1
for img, label in train_loader:
img = img.to(device)
label = label.to(device)
img = img.view(img.size(0), -1) # 展成1维
# 前向传播
out = model(img) # 传入参数,自动执行forward函数
loss = criterion(out, label)

optimizer.zero_grad() # 梯度清零
# 反向传播
# 缺省情况下,梯度是累加的,在梯度反向传播之前,需要梯度清零
loss.backward()
optimizer.step() # 基于当前梯度,更新参数
# 记录误差
train_loss += loss.item()
# 计算分类的准确率
_, pred = out.max(1) # 找出张量out最大值对应索引作为预测值
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
train_acc += acc

losses.append(train_loss / len(train_loader))
acces.append(train_acc / len(train_loader))

# 在测试集上检验效果
eval_loss = 0
eval_acc = 0
# 将模型改为预测模式
model.eval()
for img, label in test_loader:
img = img.to(device)
label = label.to(device)
img = img.view(img.size(0), -1)
# 前向传播
out = model(img)
loss = criterion(out, label)
# 记录误差
eval_loss += loss.item()
# 记录准确率
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
eval_acc += acc

eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))

print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
.format(epoch, train_loss / len(train_loader), train_acc / len(train_loader),
eval_loss / len(test_loader), eval_acc / len(test_loader)))
epoch: 0, Train Loss: 1.0274, Train Acc: 0.7921, Test Loss: 0.5553, Test Acc: 0.9008
epoch: 1, Train Loss: 0.4833, Train Acc: 0.8995, Test Loss: 0.3530, Test Acc: 0.9259
epoch: 2, Train Loss: 0.3504, Train Acc: 0.9187, Test Loss: 0.2769, Test Acc: 0.9384
epoch: 3, Train Loss: 0.2838, Train Acc: 0.9328, Test Loss: 0.2301, Test Acc: 0.9483
epoch: 4, Train Loss: 0.2431, Train Acc: 0.9408, Test Loss: 0.1980, Test Acc: 0.9530
epoch: 5, Train Loss: 0.2202, Train Acc: 0.9463, Test Loss: 0.1964, Test Acc: 0.9534
epoch: 6, Train Loss: 0.2188, Train Acc: 0.9464, Test Loss: 0.1913, Test Acc: 0.9537
epoch: 7, Train Loss: 0.2159, Train Acc: 0.9471, Test Loss: 0.1882, Test Acc: 0.9551
epoch: 8, Train Loss: 0.2131, Train Acc: 0.9487, Test Loss: 0.1869, Test Acc: 0.9540
epoch: 9, Train Loss: 0.2107, Train Acc: 0.9490, Test Loss: 0.1835, Test Acc: 0.9559
epoch: 10, Train Loss: 0.2081, Train Acc: 0.9500, Test Loss: 0.1846, Test Acc: 0.9552
epoch: 11, Train Loss: 0.2090, Train Acc: 0.9492, Test Loss: 0.1855, Test Acc: 0.9558
epoch: 12, Train Loss: 0.2091, Train Acc: 0.9483, Test Loss: 0.1841, Test Acc: 0.9558
epoch: 13, Train Loss: 0.2076, Train Acc: 0.9493, Test Loss: 0.1871, Test Acc: 0.9544
epoch: 14, Train Loss: 0.2066, Train Acc: 0.9491, Test Loss: 0.1833, Test Acc: 0.9562
epoch: 15, Train Loss: 0.2086, Train Acc: 0.9491, Test Loss: 0.1837, Test Acc: 0.9560
epoch: 16, Train Loss: 0.2074, Train Acc: 0.9496, Test Loss: 0.1827, Test Acc: 0.9559
epoch: 17, Train Loss: 0.2076, Train Acc: 0.9488, Test Loss: 0.1835, Test Acc: 0.9559
epoch: 18, Train Loss: 0.2076, Train Acc: 0.9494, Test Loss: 0.1845, Test Acc: 0.9558
epoch: 19, Train Loss: 0.2074, Train Acc: 0.9497, Test Loss: 0.1844, Test Acc: 0.9551

6.2 可视化训练及测试损失值

1
2
3
4
5
6
7
8
9
10
plt.title('train loss')
plt.subplot(1,2,1)
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')

plt.subplot(1,2,2)
plt.title('train acces')
plt.plot(np.arange(len(acces)),acces,color='red', label='acces')
plt.legend(['Train acces'], loc='upper right')

png