简版-翻译、摘要、会话、文本生成任务顶会论文

机器翻译

ACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 ACL2019 Latent Variable Model for Multi-modal Translation https://github.com/iacercalixto/variational_mmt https://arxiv.org/pdf/1811.00357
2 ACL2021 Rewriter-Evaluator Architecture for Neural Machine Translation https://arxiv.org/pdf/2012.05414
3 ACL2021 Consistency Regularization for Cross-Lingual Fine-Tuning https://github.com/bozheng-hit/xTune https://arxiv.org/pdf/2106.08226
4 ACL2021 Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment https://github.com/CZWin32768/XLM-Align https://arxiv.org/pdf/2106.06381
5 ACL2021 Improving Zero-Shot Translation by Disentangling Positional Information https://github.com/nlp-dke/NMTGMinor/tree/master/recipes/zero-shot https://arxiv.org/pdf/2012.15127
6 ACL2021 Beyond Offline Mapping: Learning Cross-lingual Word Embeddings through Context Anchoring https://arxiv.org/pdf/2012.15715
7 ACL2021 Verb Knowledge Injection for Multilingual Event Processing https://arxiv.org/pdf/2012.15421
8 ACL2021 Common Sense Beyond English: Evaluating and Improving Multilingual Language Models for Commonsense Reasoning https://github.com/INK-USC/XCSR https://arxiv.org/pdf/2106.06937
9 ACL2021 Bilingual Lexicon Induction via Unsupervised Bitext Construction and Word Alignment https://arxiv.org/pdf/2101.00148
10 ACL2020 Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation https://github.com/bzhangGo/zero https://arxiv.org/pdf/2004.11867
11 ACL2020 Simultaneous Translation Policies: From Fixed to Adaptive https://arxiv.org/pdf/2004.13169
12 ACL2020 Multiscale Collaborative Deep Models for Neural Machine Translation https://github.com/pemywei/MSC-NMT https://arxiv.org/pdf/2004.14021
13 ACL2020 Character-Level Translation with Self-attention https://arxiv.org/pdf/2004.14788
14 ACL2020 ENGINE: Energy-Based Inference Networks for Non-Autoregressive Machine Translation https://github.com/lifu-tu/ENGINE https://arxiv.org/pdf/2005.00850
15 ACL2020 Selecting Backtranslated Data from Multiple Sources for Improved Neural Machine Translation https://arxiv.org/pdf/2005.00308
16 ACL2020 Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation https://github.com/xlhex/dpe https://arxiv.org/pdf/2005.06606
17 ACL2020 Norm-Based Curriculum Learning for Neural Machine Translation https://github.com/NLP2CT/norm-nmt https://arxiv.org/pdf/2006.02014
18 ACL2020 Bilingual Dictionary Based Neural Machine Translation without Using Parallel Sentences https://github.com/mttravel/Dictionary-based-MT https://arxiv.org/pdf/2007.02671
19 ACL2020 Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation https://github.com/bzhangGo/zero https://arxiv.org/pdf/2004.11867
20 ACL2020 ENGINE: Energy-Based Inference Networks for Non-Autoregressive Machine Translation https://github.com/lifu-tu/ENGINE https://arxiv.org/pdf/2005.00850
21 ACL2019 An Effective Approach to Unsupervised Machine Translation https://github.com/artetxem/monoses https://arxiv.org/pdf/1902.01313
22 ACL2019 When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion https://github.com/lena-voita/good-translation-wrong-in-context https://arxiv.org/pdf/1905.05979
23 ACL2019 Syntactically Supervised Transformers for Faster Neural Machine Translation https://github.com/dojoteef/synst https://arxiv.org/pdf/1906.02780
24 ACL2019 Evaluating Gender Bias in Machine Translation https://arxiv.org/pdf/2106.08680
25 ACL2019 Learning Deep Transformer Models for Machine Translation https://github.com/wangqiangneu/dlcl https://arxiv.org/pdf/1906.01787
26 ACL2019 Domain Adaptation of Neural Machine Translation by Lexicon Induction https://arxiv.org/pdf/1906.00376
27 ACL2019 Retrieving Sequential Information for Non-Autoregressive Neural Machine Translation https://github.com/ictnlp/RSI-NAT https://arxiv.org/pdf/1906.09444
28 ACL2019 Robust Neural Machine Translation with Joint Textual and Phonetic Embedding https://arxiv.org/pdf/1810.06729
29 ACL2019 Simple and Effective Paraphrastic Similarity from Parallel Translations https://arxiv.org/pdf/1909.13872
30 ACL2019 Unsupervised Question Answering by Cloze Translation https://github.com/facebookresearch/UnsupervisedQA https://arxiv.org/pdf/1906.04980
31 ACL2019 Bilingual Lexicon Induction through Unsupervised Machine Translation https://github.com/artetxem/monoses https://arxiv.org/pdf/1907.10761
32 ACL2019 Soft Contextual Data Augmentation for Neural Machine Translation https://github.com/teslacool/SCA https://arxiv.org/pdf/1905.10523
33 ACL2019 Generalized Data Augmentation for Low-Resource Translation https://arxiv.org/pdf/1906.03785

EMNLP

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 EMNLP2020 Fully Quantized Transformer for Machine Translation https://arxiv.org/pdf/1910.10485
2 EMNLP2020 Fixed Encoder Self-Attention Patterns in Transformer-Based Machine Translation https://arxiv.org/pdf/2002.10260
3 EMNLP2020 Adversarial Subword Regularization for Robust Neural Machine Translation https://github.com/dmis-lab/AdvSR https://arxiv.org/pdf/2004.14109
4 EMNLP2020 Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages https://github.com/masakhane-io/masakhane-mt https://arxiv.org/pdf/2010.02353
5 EMNLP2020 On Romanization for Model Transfer Between Scripts in Neural Machine Translation https://arxiv.org/pdf/2009.14824
6 EMNLP2020 Graph-to-Tree Neural Networks for Learning Structured Input-Output Translation with Applications to Semantic Parsing and Math Word Problem https://github.com/IBM/Graph2Tree https://arxiv.org/pdf/2004.13781
7 EMNLP2020 On Long-Tailed Phenomena in Neural Machine Translation https://github.com/vyraun/long-tailed https://arxiv.org/pdf/2010.04924
8 EMNLP2020 A Multilingual View of Unsupervised Machine Translation https://arxiv.org/pdf/2002.02955
9 EMNLP2019 Explicit Cross-lingual Pre-training for Unsupervised Machine Translation https://arxiv.org/pdf/1909.00180
10 EMNLP2019 Improving Back-Translation with Uncertainty-based Confidence Estimation https://github.com/THUNLP-MT/UCE4BT https://arxiv.org/pdf/1909.00157
11 EMNLP2019 Iterative Dual Domain Adaptation for Neural Machine Translation https://arxiv.org/pdf/1912.07239
12 EMNLP2019 Context-Aware Monolingual Repair for Neural Machine Translation https://github.com/lena-voita/good-translation-wrong-in-context https://arxiv.org/pdf/1909.01383
13 EMNLP2019 Dynamic Past and Future for Neural Machine Translation https://github.com/zhengzx-nlp/dynamic-nmt https://arxiv.org/pdf/1904.09646
14 EMNLP2019 Simpler and Faster Learning of Adaptive Policies for Simultaneous Translation https://arxiv.org/pdf/1909.01559
15 EMNLP2019 Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings https://github.com/zdou0830/DAFE https://arxiv.org/pdf/1908.10430
16 EMNLP2019 Controlling Text Complexity in Neural Machine Translation https://github.com/sweta20/ComplexityControlledMT https://arxiv.org/pdf/1911.00835
17 EMNLP2019 Simple and Effective Noisy Channel Modeling for Neural Machine Translation https://github.com/pytorch/fairseq https://arxiv.org/pdf/1908.05731
18 EMNLP2019 Hint-Based Training for Non-Autoregressive Machine Translation https://github.com/zhuohan123/hint-nart https://arxiv.org/pdf/1909.06708

NAACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 NAACL2021 Self-Training for Unsupervised Neural Machine Translation in Unbalanced Training Data Scenarios https://arxiv.org/pdf/2004.04507
2 NAACL2021 Harnessing Multilinguality in Unsupervised Machine Translation for Rare Languages https://arxiv.org/pdf/2009.11201
3 NAACL2021 Towards Continual Learning for Multilingual Machine Translation via Vocabulary Substitution https://arxiv.org/pdf/2103.06799
4 NAACL2021 Probing Word Translations in the Transformer and Trading Decoder for Encoder Layers https://arxiv.org/pdf/2003.09586
5 NAACL2021 Sequence Tagging and Machine Translation https://arxiv.org/pdf/1911.00234
6 NAACL2021 Neural Machine Translation without Embeddings https://github.com/UriSha/EmbeddinglessNMT https://arxiv.org/pdf/2008.09396
7 NAACL2021 From Masked Language Modeling to Translation: Non-English Auxiliary Tasks Improve Zero-shot Spoken Language Understanding https://bitbucket.org/robvanderg/xsid https://arxiv.org/pdf/2105.07316
8 NAACL2021 Improving the Lexical Ability of Pretrained Language Models for Unsupervised Neural Machine Translation https://github.com/alexandra-chron/lexical_xlm_relm https://arxiv.org/pdf/2103.10531
9 NAACL2021 Multi-Task Learning with Shared Encoder for Non-Autoregressive Machine Translation https://github.com/yongchanghao/multi-task-nat https://arxiv.org/pdf/2010.12868
10 NAACL2021 Assessing Reference-Free Peer Evaluation for Machine Translation https://arxiv.org/pdf/2104.05146
11 NAACL2021 Generative Imagination Elevates Machine Translation https://arxiv.org/pdf/2009.09654
12 NAACL2021 Context-aware Decoder for Neural Machine Translation using a Target-side Document-Level Language Model https://arxiv.org/pdf/2010.12827
13 NAACL2021 Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation https://arxiv.org/pdf/2104.05964
14 NAACL2021 The Curious Case of Hallucinations in Neural Machine Translation https://github.com/vyraun/hallucinations https://arxiv.org/pdf/2104.06683
15 NAACL2021 Revisiting the Weaknesses of Reinforcement Learning for Neural Machine Translation https://github.com/samuki/reinforce-joey https://arxiv.org/pdf/2106.08942
16 NAACL2021 Cross-lingual Supervision Improves Unsupervised Neural Machine Translation https://arxiv.org/pdf/2004.03137
17 NAACL2019 ReWE: Regressing Word Embeddings for Regularization of Neural Machine Translation Systems https://arxiv.org/pdf/1904.02461
18 NAACL2019 Lost in Machine Translation: A Method to Reduce Meaning Loss https://github.com/reubenharry/pragmatic-translation https://arxiv.org/pdf/1902.09514
19 NAACL2019 Syntax-Enhanced Neural Machine Translation with Syntax-Aware Word Representations https://arxiv.org/pdf/1905.02878
20 NAACL2019 Improving Robustness of Machine Translation with Synthetic Noise https://github.com/MysteryVaibhav/robust_mtnt https://arxiv.org/pdf/1902.09508
21 NAACL2019 Differentiable Sampling with Flexible Reference Word Order for Neural Machine Translation https://github.com/Izecson/saml-nmt https://arxiv.org/pdf/1904.04079
22 NAACL2019 Fluent Translations from Disfluent Speech in End-to-End Speech Translation https://arxiv.org/pdf/1906.00556
23 NAACL2019 Selective Attention for Context-aware Neural Machine Translation https://github.com/sameenmaruf/selective-attn https://arxiv.org/pdf/1903.08788

COLING

会话/对话系统

ACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 ACL2021 TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems https://arxiv.org/pdf/2012.12458
2 ACL2021 HERALD: An Annotation Efficient Method to Detect User Disengagement in Social Conversations https://github.com/Weixin-Liang/HERALD https://arxiv.org/pdf/2106.00162
3 ACL2021 Maria: A Visual Experience Powered Conversational Agent https://github.com/jokieleung/Maria https://arxiv.org/pdf/2105.13073
4 ACL2021 Dialogue Response Selection with Hierarchical Curriculum Learning https://arxiv.org/pdf/2012.14756
5 ACL2021 Diversifying Dialog Generation via Adaptive Label Smoothing https://github.com/lemon234071/AdaLabel https://arxiv.org/pdf/2105.14556
6 ACL2021 BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data https://github.com/songhaoyu/BoB https://arxiv.org/pdf/2106.06169
7 ACL2021 I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling https://arxiv.org/pdf/2012.13391
8 ACL2021 A Sequence-to-Sequence Approach to Dialogue State Tracking https://github.com/sweetalyssum/Seq2Seq-DU https://arxiv.org/pdf/2011.09553
9 ACL2021 Generating Relevant and Coherent Dialogue Responses using Self-Separated Conditional Variational AutoEncoders https://arxiv.org/pdf/2106.03410
10 ACL2021 Intent Classification and Slot Filling for Privacy Policies https://github.com/wasiahmad/PolicyIE https://arxiv.org/pdf/2101.00123
11 ACL2021 Dual Slot Selector via Local Reliability Verification for Dialogue State Tracking https://github.com/guojinyu88/DSSDST https://arxiv.org/pdf/2107.12578
12 ACL2021 Learning from Perturbations: Diverse and Informative Dialogue Generation with Inverse Adversarial Training https://arxiv.org/pdf/2105.15171
13 ACL2021 Modeling Bilingual Conversational Characteristics for Neural Chat Translation https://github.com/XL2248/CPCC https://arxiv.org/pdf/2107.11164
14 ACL2020 Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog https://github.com/LooperXX/DF-Net https://arxiv.org/pdf/2004.11019
15 ACL2020 Learning Dialog Policies from Weak Demonstrations https://arxiv.org/pdf/2004.11054
16 ACL2020 Span-ConveRT: Few-shot Span Extraction for Dialog with Pretrained Conversational Representations https://github.com/PolyAI-LDN/task-specific-datasets https://arxiv.org/pdf/2005.08866
17 ACL2020 Diversifying Dialogue Generation with Non-Conversational Text https://github.com/chin-gyou/Div-Non-Conv https://arxiv.org/pdf/2005.04346
18 ACL2020 Grounding Conversations with Improvised Dialogues https://github.com/wise-east/spolin https://arxiv.org/pdf/2004.09544
19 ACL2020 Designing Precise and Robust Dialogue Response Evaluators https://github.com/ZHAOTING/dialog-processing https://arxiv.org/pdf/2004.04908
20 ACL2020 PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable https://github.com/PaddlePaddle/Research https://arxiv.org/pdf/1910.07931
21 ACL2020 Zero-Shot Transfer Learning with Synthesized Data for Multi-Domain Dialogue State Tracking https://github.com/stanford-oval/zero-shot-multiwoz-acl2020 https://arxiv.org/pdf/2005.00891
22 ACL2020 Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward Decomposition https://github.com/truthless11/MADPL https://arxiv.org/pdf/2004.03809
23 ACL2020 Towards Conversational Recommendation over Multi-Type Dialogs https://github.com/PaddlePaddle/models https://arxiv.org/pdf/2005.03954
24 ACL2020 KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation https://github.com/thu-coai/KdConv https://arxiv.org/pdf/2004.04100
25 ACL2019 Incremental Transformer with Deliberation Decoder for Document Grounded Conversations https://github.com/lizekang/ITDD https://arxiv.org/pdf/1907.08854
26 ACL2019 E3: Entailment-driven Extracting and Editing for Conversational Machine Reading https://github.com/vzhong/e3 https://arxiv.org/pdf/1906.05373
27 ACL2019 Improving Multi-turn Dialogue Modelling with Utterance ReWriter https://arxiv.org/pdf/1906.07004
28 ACL2019 Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention https://github.com/wenhuchen/HDSA-Dialog https://arxiv.org/pdf/1905.12866
29 ACL2019 Observing Dialogue in Therapy: Categorizing and Forecasting Behavioral Codes https://github.com/utahnlp/therapist-observer https://arxiv.org/pdf/1907.00326
30 ACL2019 Multimodal Transformer Networks for End-to-End Video-Grounded Dialogue Systems https://github.com/henryhungle/MTN https://arxiv.org/pdf/1907.01166
31 ACL2019 Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good https://gitlab.com/ucdavisnlp/persuasionforgood https://arxiv.org/pdf/1906.06725

EMNLP

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 EMNLP2020 Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation https://github.com/chujiezheng/DiffKS https://arxiv.org/pdf/2009.09378
2 EMNLP2020 Few-shot Natural Language Generation for Task-Oriented Dialog https://github.com/pengbaolin/SC-GPT https://arxiv.org/pdf/2002.12328
3 EMNLP2020 Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems https://github.com/HLTCHKUST/ke-dialogue https://arxiv.org/pdf/2009.13656
4 EMNLP2020 Plug-and-Play Conversational Models https://github.com/andreamad8/PPCM https://arxiv.org/pdf/2010.04344
5 EMNLP2020 COSMIC: COmmonSense knowledge for eMotion Identification in Conversations https://github.com/declare-lab/conv-emotion https://arxiv.org/pdf/2010.02795
6 EMNLP2020 Generalizable and Explainable Dialogue Generation via Explicit Action Learning https://arxiv.org/pdf/2010.03755
7 EMNLP2020 Effects of Naturalistic Variation in Goal-Oriented Dialog https://github.com/IBM/naturalistic-variation-goal-oriented-dialog-datasets https://arxiv.org/pdf/2010.02260
8 EMNLP2019 DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation https://github.com/SenticNet/conv-emotion https://arxiv.org/pdf/1908.11540
9 EMNLP2019 Modeling Multi-Action Policy for Task-Oriented Dialogues https://arxiv.org/pdf/1908.11546
10 EMNLP2019 Automatically Learning Data Augmentation Policies for Dialogue Tasks https://github.com/WolfNiu/AutoAugDialogue https://arxiv.org/pdf/1909.12868
11 EMNLP2019 Dependency Parsing for Spoken Dialog Systems https://arxiv.org/pdf/1909.03317
12 EMNLP2019 Towards Knowledge-Based Recommender Dialog System https://github.com/THUDM/KBRD https://arxiv.org/pdf/1908.05391
13 EMNLP2019 DyKgChat: Benchmarking Dialogue Generation Grounding on Dynamic Knowledge Graphs https://github.com/Pascalson/DyKGChat https://arxiv.org/pdf/1910.00610
14 EMNLP2019 How to Build User Simulators to Train RL-based Dialog Systems https://github.com/wyshi/user-simulator https://arxiv.org/pdf/1909.01388
15 EMNLP2019 Dual Attention Networks for Visual Reference Resolution in Visual Dialog https://github.com/gicheonkang/DAN-VisDial https://arxiv.org/pdf/1902.09368
16 EMNLP2019 Dialog Intent Induction with Deep Multi-View Clustering https://github.com/asappresearch/dialog-intent-induction https://arxiv.org/pdf/1908.11487
17 EMNLP2019 Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base https://github.com/taoshen58/MaSP https://arxiv.org/pdf/1910.05069

NAACL

COLING

文本生成

ACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 ACL2021 Generalising Multilingual Concept-to-Text NLG with Language Agnostic Delexicalisation https://arxiv.org/pdf/2105.03432
2 ACL2021 Prefix-Tuning: Optimizing Continuous Prompts for Generation https://arxiv.org/pdf/2101.00190
3 ACL2021 Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models https://github.com/tongshuangwu/polyjuice https://arxiv.org/pdf/2101.00288
4 ACL2021 Conditional Generation of Temporally-ordered Event Sequences https://arxiv.org/pdf/2012.15786
5 ACL2021 Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation https://arxiv.org/pdf/2106.06471
6 ACL2021 Factorising Meaning and Form for Intent-Preserving Paraphrasing https://github.com/tomhosking/separator https://arxiv.org/pdf/2105.15053
7 ACL2021 Improving Formality Style Transfer with Context-Aware Rule Injection https://arxiv.org/pdf/2106.00210
8 ACL2021 DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling https://arxiv.org/pdf/2107.01875
9 ACL2021 Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Problem https://arxiv.org/pdf/2012.15329
10 ACL2021 One2Set: Generating Diverse Keyphrases as a Set https://github.com/jiacheng-ye/kg_one2set https://arxiv.org/pdf/2105.11134
11 ACL2020 Distilling Knowledge Learned in BERT for Text Generation https://github.com/ChenRocks/Distill-BERT-Textgen https://arxiv.org/pdf/1911.03829
12 ACL2020 Rigid Formats Controlled Text Generation https://github.com/lipiji/SongNet https://arxiv.org/pdf/2004.08022
13 ACL2020 Semantic Graphs for Generating Deep Questions https://github.com/WING-NUS/SG-Deep-Question-Generation https://arxiv.org/pdf/2004.12704
14 ACL2020 Politeness Transfer: A Tag and Generate Approach https://arxiv.org/pdf/2004.14257
15 ACL2020 GPT-too: A language-model-first approach for AMR-to-text generation https://github.com/IBM/GPT-too-AMR2text https://arxiv.org/pdf/2005.09123
16 ACL2020 Posterior Control of Blackbox Generation https://github.com/XiangLi1999/PosteriorControl-NLG https://arxiv.org/pdf/2005.04560
17 ACL2020 Parallel Data Augmentation for Formality Style Transfer https://github.com/lancopku/Augmented_Data_for_FST https://arxiv.org/pdf/2005.07522
18 ACL2020 Neural Data-to-Text Generation via Jointly Learning the Segmentation and Correspondence https://arxiv.org/pdf/2005.01096
19 ACL2020 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension https://arxiv.org/pdf/1910.13461
20 ACL2020 Pre-train and Plug-in: Flexible Conditional Text Generation with Variational Auto- Encoders https://github.com/WHUIR/PPVAE https://arxiv.org/pdf/1911.03882
21 ACL2020 Two Birds, One Stone: A Simple, Unified Model for Text Generation from Structured and Unstructured Data https://github.com/h-shahidi/2birds-gen https://arxiv.org/pdf/1909.10158
22 ACL2020 Unsupervised Opinion Summarization as Copycat-Review Generation https://github.com/ixlan/CopyCat-abstractive-opinion-summarizer https://arxiv.org/pdf/1911.02247
23 ACL2020 Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder https://github.com/microsoft/EA-VQ-VAE https://arxiv.org/pdf/2006.08101
24 ACL2020 BLEURT: Learning Robust Metrics for Text Generation https://github.com/google-research/bleurt https://arxiv.org/pdf/2004.04696
25 ACL2019 Automatic Generation of High Quality CCGbanks for Parser Domain Adaptation https://arxiv.org/pdf/1906.01834
26 ACL2019 PaperRobot: Incremental Draft Generation of Scientific Ideas https://github.com/EagleW/PaperRobot https://arxiv.org/pdf/1905.07870
27 ACL2019 Data-to-text Generation with Entity Modeling https://github.com/ratishsp/data2text-entity-py https://arxiv.org/pdf/1906.03221
28 ACL2019 Key Fact as Pivot: A Two-Stage Model for Low Resource Table-to-Text Generation https://github.com/lancopku/Pivot https://arxiv.org/pdf/1908.03067
29 ACL2019 Reinforced Dynamic Reasoning for Conversational Question Generation https://github.com/ZJULearning/ReDR https://arxiv.org/pdf/1907.12667
30 ACL2019 Neural Keyphrase Generation via Reinforcement Learning with Adaptive Rewards https://github.com/kenchan0226/keyphrase-generation-rl https://arxiv.org/pdf/1906.04106
31 ACL2019 Topic-Aware Neural Keyphrase Generation for Social Media Language https://github.com/yuewang-cuhk/TAKG https://arxiv.org/pdf/1906.03889
32 ACL2019 Argument Generation with Retrieval, Planning, and Realization https://arxiv.org/pdf/1906.03717
33 ACL2019 Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention https://github.com/wenhuchen/HDSA-Dialog https://arxiv.org/pdf/1905.12866
34 ACL2019 Coherent Comments Generation for Chinese Articles with a Graph-to-Sequence Model https://github.com/lancopku/Graph-to-seq-comment-generation https://arxiv.org/pdf/1906.01231
35 ACL2019 Cross-Lingual Training for Automatic Question Generation https://github.com/vishwajeet93/clqg https://arxiv.org/pdf/1906.02525
36 ACL2019 Graph Neural Networks with Generated Parameters for Relation Extraction https://arxiv.org/pdf/1902.00756
37 ACL2019 Learning to Select, Track, and Generate for Data-to-Text https://github.com/aistairc/rotowire-modified https://arxiv.org/pdf/1907.09699
38 ACL2019 Predicting Human Activities from User-Generated Content https://arxiv.org/pdf/1907.08540

EMNLP

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 EMNLP2020 Few-shot Natural Language Generation for Task-Oriented Dialog https://github.com/pengbaolin/SC-GPT https://arxiv.org/pdf/2002.12328
2 EMNLP2020 How Decoding Strategies Affect the Verifiability of Generated Text https://arxiv.org/pdf/1911.03587
3 EMNLP2020 Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation https://arxiv.org/pdf/2004.14983
4 EMNLP2020 Pretrained Language Models for Dialogue Generation with Multiple Input Sources https://github.com/caoyu-noob/Multi-GPT2 https://arxiv.org/pdf/2010.07576
5 EMNLP2020 Logic2Text: High-Fidelity Natural Language Generation from Logical Forms https://github.com/czyssrs/Logic2Text https://arxiv.org/pdf/2004.14579
6 EMNLP2020 Composed Variational Natural Language Generation for Few-shot Intents https://arxiv.org/pdf/2009.10056
7 EMNLP2020 Continual Learning for Natural Language Generation in Task-oriented Dialog Systems https://arxiv.org/pdf/2010.00910
8 EMNLP2020 Dual Inference for Improving Language Understanding and Generation https://github.com/MiuLab/DuaLUG https://arxiv.org/pdf/2010.04246
9 EMNLP2019 Neural data-to-text generation: A comparison between pipeline and end- to-end architectures https://github.com/ThiagoCF05/webnlg https://arxiv.org/pdf/1908.09022
10 EMNLP2019 MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance https://arxiv.org/pdf/1909.02622
11 EMNLP2019 Select and Attend: Towards Controllable Content Selection in Text Generation https://github.com/chin-gyou/controllable-selection https://arxiv.org/pdf/1909.04453
12 EMNLP2019 Knowledge Aware Conversation Generation with Explainable Reasoning over Augmented Graphs https://github.com/PaddlePaddle/Research/tree/master/NLP/EMNLP2019-AKGCM https://arxiv.org/pdf/1903.10245
13 EMNLP2019 Autoregressive Text Generation Beyond Feedback Loops https://github.com/schmiflo/crf-generation https://arxiv.org/pdf/1908.11658
14 EMNLP2019 ARAML: A Stable Adversarial Training Framework for Text Generation https://github.com/kepei1106/ARAML https://arxiv.org/pdf/1908.07195
15 EMNLP2019 Judge the Judges: A Large-Scale Evaluation Study of Neural Language Models for Online Review Generation https://github.com/Crista23/JudgeTheJudges https://arxiv.org/pdf/1901.00398

NAACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 NAACL2021 APo-VAE: Text Generation in Hyperbolic Space https://arxiv.org/pdf/2005.00054
2 NAACL2021 FUDGE: Controlled Text Generation With Future Discriminators https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation https://arxiv.org/pdf/2104.05218
3 NAACL2021 NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints https://arxiv.org/pdf/2010.12884
4 NAACL2021 Plot-guided Adversarial Example Construction for Evaluating Open-domain Story Generation https://github.com/PlusLabNLP/Plot-guided-Coherence-Evaluation https://arxiv.org/pdf/2104.05801
5 NAACL2021 Progressive Generation of Long Text with Pretrained Language Models https://github.com/tanyuqian/progressive-generation https://arxiv.org/pdf/2006.15720
6 NAACL2021 OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation https://arxiv.org/pdf/2104.02484
7 NAACL2019 Jointly Optimizing Diversity and Relevance in Neural Response Generation https://arxiv.org/pdf/1902.11205
8 NAACL2019 Neural Text Generation from Rich Semantic Representations https://github.com/shlurbee/dmrs-text-generation-naacl2019 https://arxiv.org/pdf/1904.11564
9 NAACL2019 Text Generation from Knowledge Graphs with Graph Transformers https://github.com/rikdz/GraphWriter https://arxiv.org/pdf/1904.02342
10 NAACL2019 Text Generation with Exemplar-based Adaptive Decoding https://arxiv.org/pdf/1904.04428
11 NAACL2019 Accelerated Reinforcement Learning for Sentence Generation by Vocabulary Prediction https://github.com/hassyGo/NLG-RL https://arxiv.org/pdf/1809.01694
12 NAACL2019 Pre-trained language model representations for language generation https://github.com/pytorch/fairseq https://arxiv.org/pdf/1903.09722
13 NAACL2019 Pragmatically Informative Text Generation https://arxiv.org/pdf/1904.01301
14 NAACL2019 Stochastic Wasserstein Autoencoder for Probabilistic Sentence Generation https://github.com/HareeshBahuleyan/probabilistic_nlg https://arxiv.org/pdf/1806.08462

COLING

摘要

ACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 ACL2021 Cross-Lingual Abstractive Summarization with Limited Parallel Resources https://github.com/WoodenWhite/MCLAS https://arxiv.org/pdf/2105.13648
2 ACL2021 Improving Factual Consistency of Abstractive Summarization via Question Answering https://arxiv.org/pdf/2105.04623
3 ACL2021 Long-Span Summarization via Local Attention and Content Selection https://github.com/potsawee/longsum0 https://arxiv.org/pdf/2105.03801
4 ACL2021 TWAG: A Topic-Guided Wikipedia Abstract Generator https://github.com/THU-KEG/TWAG https://arxiv.org/pdf/2106.15135
5 ACL2021 Language Model as an Annotator: Exploring DialoGPT for Dialogue Summarization https://github.com/xcfcode/PLM_annotator https://arxiv.org/pdf/2105.12544
6 ACL2021 BASS: Boosting Abstractive Summarization with Unified Semantic Graph https://arxiv.org/pdf/2105.12041
7 ACL2021 Focus Attention: Promoting Faithfulness and Diversity in Summarization https://arxiv.org/pdf/2105.11921
8 ACL2021 Generating Query Focused Summaries from Query-Free Resources https://github.com/yumoxu/marge https://arxiv.org/pdf/2012.14774
9 ACL2021 ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive Summarization with Argument Mining https://github.com/Yale-LILY/ConvoSumm https://arxiv.org/pdf/2106.00829
10 ACL2020 On Faithfulness and Factuality in Abstractive Summarization https://github.com/google-research-datasets/xsum_hallucination_annotations https://arxiv.org/pdf/2005.00661
11 ACL2020 FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization https://github.com/esdurmus/summary-faithfulness https://arxiv.org/pdf/2005.03754
12 ACL2020 On Faithfulness and Factuality in Abstractive Summarization https://github.com/google-research-datasets/xsum_hallucination_annotations https://arxiv.org/pdf/2005.00661
13 ACL2020 Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward https://github.com/luyang-huang96/GraphAugmentedSum https://arxiv.org/pdf/2005.01159
14 ACL2020 The Summary Loop: Learning to Write Abstractive Summaries Without Examples https://github.com/cannylab/summary_loop https://arxiv.org/pdf/2105.05361
15 ACL2020 Leveraging Graph to Improve Abstractive Multi-Document Summarization https://github.com/PaddlePaddle/Research https://arxiv.org/pdf/2005.10043
16 ACL2019 Scoring Sentence Singletons and Pairs for Abstractive Summarization https://github.com/ucfnlp/summarization-sing-pair-mix https://arxiv.org/pdf/1906.00077

EMNLP

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 EMNLP2020 A Hierarchical Network for Abstractive Meeting Summarization with Cross- Domain Pretraining https://github.com/microsoft/HMNet https://arxiv.org/pdf/2004.02016
2 EMNLP2020 Conditional Neural Generation using Sub-Aspect Functions for Extractive News Summarization https://arxiv.org/pdf/2004.13983
3 EMNLP2020 Unsupervised Extractive Summarization by Pre-training Hierarchical Transformers https://github.com/xssstory/STAS https://arxiv.org/pdf/2010.08242
4 EMNLP2020 Corpora Evaluation and System Bias detection in Multi Document Summarization https://github.com/LCS2-IIITD/summarization_bias https://arxiv.org/pdf/2010.01786
5 EMNLP2020 An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems https://github.com/zide05/CDEvalSumm https://arxiv.org/pdf/2010.05139
6 EMNLP2019 Contrastive Attention Mechanism for Abstractive Sentence Summarization https://github.com/travel-go/Abstractive-Text-Summarization https://arxiv.org/pdf/1910.13114
7 EMNLP2019 Concept Pointer Network for Abstractive Summarization https://github.com/wprojectsn/codes https://arxiv.org/pdf/1910.08486
8 EMNLP2019 Contrastive Attention Mechanism for Abstractive Sentence Summarization https://github.com/travel-go/Abstractive-Text-Summarization https://arxiv.org/pdf/1910.13114
9 EMNLP2019 Neural Extractive Text Summarization with Syntactic Compression https://arxiv.org/pdf/1902.00863
10 EMNLP2019 Text Summarization with Pretrained Encoders https://github.com/nlpyang/PreSumm https://arxiv.org/pdf/1908.08345

NAACL

序号 会议/期刊 论文 主要技术 代码 论文下载地址
1 NAACL2021 GSum: A General Framework for Guided Neural Abstractive Summarization https://github.com/neulab/guided_summarization https://arxiv.org/pdf/2010.08014
2 NAACL2021 Improving Zero and Few-Shot Abstractive Summarization with Intermediate Fine- tuning and Data Augmentation https://arxiv.org/pdf/2010.12836
3 NAACL2021 Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs https://github.com/GT-SALT/Structure-Aware-BART https://arxiv.org/pdf/2104.08400
4 NAACL2021 AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive Summarization https://github.com/TysonYu/AdaptSum https://arxiv.org/pdf/2103.11332
5 NAACL2021 A New Approach to Overgenerating and Scoring Abstractive Summaries https://github.com/ucfnlp/varying-length-summ https://arxiv.org/pdf/2104.01726
6 NAACL2021 Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection https://arxiv.org/pdf/2104.09061
7 NAACL2021 Enriching Transformers with Structured Tensor-Product Representations for Abstractive Summarization https://github.com/jiangycTarheel/TPT-Summ https://arxiv.org/pdf/2106.01317
8 NAACL2021 Attention Head Masking for Inference Time Content Selection in Abstractive Summarization https://arxiv.org/pdf/2104.02205
9 NAACL2021 Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics https://github.com/artidoro/frank https://arxiv.org/pdf/2104.13346

COLING